3 Act Lessons | Mathematics Grade 8

3 Act Lessons | Mathematics Grade 8

		tandards		rting Standards
	8.EE.7 Solve linear	one variable.	8.SP. 2 Know that straig relationships between tw that suggest a linear ass informally assess the m data points to the line.	es are widely used to model uantitative variables. For scatter plots ion, informally fit a straight line, and fit by judging the closeness of the
	8.EE.7a Give exam one solution, infin which of these poss transforming the equivalent equation (where a and b ar	equations in one variable with solutions, or no solutions. Show he case by successively n into simpler forms, until an m $x=a, a=a$, or $a=b$ results mbers).	8.SP. 3 Use the equation context of bivariate me intercept. For example, interpret a slope of 1.5 of sunlight each day is mature plant height.	linear model to solve problems in the ment data, interpreting the slope and inear model for a biology experiment, as meaning that an additional hour ated with an additional 1.5 cm in
	8.EE.7b Solve line coefficients, inclu expanding express collecting like term	with rational number whose solutions require distributive property and		
$\frac{10}{0}$	Title	Topic	Standards	Resources
	Ditch Diggers	Linear Equation	8.EE.7, MP. 4	101qs
$\stackrel{\text { ® }}{\underline{E}}$	Stacking Cups	Slope-Intercept, Linear Functions, System of Equations	8.EE.7, 8.EE.7b, 8.EE.8, 8.EE.8a, MP. 4	101qs

3 Act Lessons | Mathematics Grade 8

		Standards		rting Standards
	8.EE. 5 Graph prop rate as the slope proportional relat example, compare equation to determ greater speed.	ionships, interpreting the unit Compare two different esented in different ways. For me graph to a distance-time two moving objects has	8.EE. 6 Use similar triang between any two distinc coordinate plane; derive origin and the equation y vertical axis at b.	explain why the slope m is the same ints on a non-vertical line in the equation $y=m x$ for a line through the $m x+b$ for a line intercepting the
	8.F. 4 Construct a between two qua initial value of the or from two (x, y) or from a graph. I of a linear functio terms of its graph	odel a linear relationship mine the rate of change and m a description of a relationship ing reading these from a table ate of change and initial value the situation it models, and in values.	8.F. 1 Understand that input exactly one outp ordered pairs consistin (Function notation is not	tion is a rule that assigns to each graph of a function is the set of input and the corresponding output. uired in grade 8)
	8.F.5 Describe qua between two qua function is increas Sketch a graph th function that has	functional relationship lyzing a graph (e.g., where the sing, linear or nonlinear). qualitative features of a d verbally.	8.F. 3 Interpret the equat function, whose graph is that are not linear. For ex of a square as a function graph contains the points straight line.	$y=m x+b$ as defining a linear raight line; give examples of functions ple, the function $A=s_{2}$ giving the area side length is not linear because its $1),(2,4)$ and $(3,9)$, which are not on a
	Title	Topic	Standards	Resources
4	25 Billion Apps	Linear	8.F.4, MP.2, MP. 4	101qs
	Joulies	Temperature	8.F.5, MP.1, MP.3, MP. 4	101qs
	Styrofoam Cups	Linear, function, slope, slope intercept	$\begin{aligned} & \text { 8.EE.5, 8.EE.6, 8.EE.7, } \\ & \text { 8.EE.7a, 8.F.4, 8.F.5, } \\ & \text { A.CED.1, A.REI.3, MP. } 8 \end{aligned}$	101qs
	Drag Race	Distance, Rate, Time	8.EE. 5	Blog

3 Act Lessons | Mathematics Grade 8

	Priority Standards		Supporting Standards	
	8.EE.8 Analyze and solve pairs of simultaneous linear equations. 8.F. 2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.			
	Title	Topic	Standards	Resources
	Playing Catch Up	Rates	8.EE.8, MP. 4	Dan Meyer
	Basketball Shots	System of Equations	8.EE.5, 8.EE.8, 8.EE.8a, 8.EE.8b, 8.EE.8c	101qs

3 Act Lessons | Mathematics Grade 8

		tandards		rting Standards
	8.G.7 Apply the P side lengths in rig problems in two	heorem to determine unknown real-world and mathematical ensions.	8.G.6 Explain a proo converse	ythagorean Theorem and its
	8.G.8 Apply the between two po	heorem to find the distance nate system.	8.EE. 2 Use square r solutions to equatio positive rational nu squares and cube r irrational.	ube root symbols to represent form $x_{2}=p$ and $x_{3}=p$, where p is a aluate square roots of small perfect mall perfect cubes. Know that V2 is
			8.NS. 2 Use rational compare the size of approximately on a of expressions (e.g. expansion of $\sqrt{ } 2$, sh 1.4 and 1.5, and exp approximations.	ations of irrational numbers to numbers, locate them ine diagram, and estimate the value example, by truncating the decimal 2 is between 1 and 2, then between to continue on to get better
	Title	Topic	Standards	Resources
	Taco Cart	Pythagorean Theorem and $\mathrm{D}=\mathrm{RT}$	8.G.7, F.IF.4, MP. 4	101qs
	Snail's Pace	Rate, Time, Distance, Pythagorean Theorem	8.G.6, 8.G. 7	101qs
	Basketball Travel	Pythagorean Theorem, D=RT	8.G.6	Vemeo
	TV Space	Pythagorean Theorem	8.G.6	$\underline{\text { mrpiccmath }}$

3 Act Lessons | Mathematics Grade 8

	Priority Standards		Supporting Standards	
	8.G.9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.		8.EE. 2 Use square root and cube root symbols to represent solutions to equations of the form $x_{2}=p$ and $x_{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that V2 is irrational.	
			8.NS. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π 2). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that V 2 is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue on to get better approximations.	
	Title	Topic	Standards	Resources

3 Act Lessons | Mathematics Grade 8

	Priority Standards		Supporting Standards	
	8.G.5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.		8.EE. 6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.	
	Title	Topic	Standards	Resources

3 Act Lessons | Mathematics Grade 8

3 Act Lessons | Mathematics Grade 8

		Standards	Supp	ting Standards
	8.SP. 4 Understan seen in bivariate relative frequenc interpret a two-w variables collecte frequencies calcu possible associati collect data from have a curfew on assigned chores a have a curfew als	s of association can also be ta by displaying frequencies and ay table. Construct and marizing data on two categorical me subjects. Use relative or columns to describe he two variables. For example, ur class on whether or not they and whether or not they have re evidence that those who chores?	8.SP. 1 Construct and interp measurement data to inve two quantities. Describe p positive or negative associa association.	scatter plots for bivariate gate patterns of association between erns such as clustering, outliers, on, linear association, and nonlinear
			8.SP. 2 Know that straight lin relationships between two that suggest a linear assoc informally assess the model data points to the line.	es are widely used to model uantitative variables. For scatter plots ion, informally fit a straight line, and it by judging the closeness of the
	Title	Topic	Standards	Resources
	Deodorant	Rate of Change, Proportions	S.IC.4, MP.4, 8.SP.2, 8.SP. 1	101qs

