3 Act Lessons | Mathematics Grade 7

3 Act Lessons | Mathematics Grade 7

Priority Standards

7.EE. 3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making \$25 an hour gets a 10\% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar $93 / 4$ inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
7.EE. 4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
7.EE.4a Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?
7.EE.4b Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.

3 Act Lessons | Mathematics Grade 7

Title	Topic	Standards	Resources	

3 Act Lessons | Mathematics Grade 7

3 Act Lessons | Mathematics Grade 7

		tandards		rting Standards
	7.G.6 Solve real-w area, volume and objects composed and right prisms.	ematical problems involving f two- and three-dimensional quadrilaterals, polygons, cubes,	7.EE. 2 Understan in a problem cont quantities in it are that "increase by	iting an expression in different forms dight on the problem and how the or example, $a+0.05 a=1.05 a$ means same as "multiply by 1.05."
			7.EE. 3 Solve multiwith positive and n numbers, fractions properties of opera convert between for reasonableness of estimation strategi hour gets a 10% ra salary an hour, or $\$$ place a towel bar 9 27 1/2 inches wide, from each edge; th computation.	ife and mathematical problems posed tional numbers in any form (whole mals), using tools strategically. Apply calculate with numbers in any form; propriate; and assess the using mental computation and ample: If a woman making $\$ 25$ an ill make an additional 1/10 of her a new salary of $\$ 27.50$. If you want to s long in the center of a door that is need to place the bar about 9 inches e can be used as a check on the exact
			7.EE. 4 Use variabla mathematical pro inequalities to solv	sent quantities in a real-world or construct simple equations and sy reasoning about the quantities.
	Title	Topic	Standards	Resources
	File Cabinet	Surface area of a rectangular prism	7.G.6, 6.G.4	$\begin{aligned} & \text { 1019's } \\ & \text { Stadel's Blog } \\ & \hline \end{aligned}$

	Priority Standards		Supporting Standards	
	7.G.5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.		7.G.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	
	Title	Topic	Standards	Resources

3 Act Lessons | Mathematics Grade 7

3 Act Lessons | Mathematics Grade 7

	Priority Standards	Supporting Standards
	7.SP. 2 Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.	7.SP. 1 Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
		7.SP. 3 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.
		7.SP. 4 Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourthgrade science book.
		7.SP. 5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
		7.SP. 6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its

		long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
		7.SP.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.
		7.SP.7a Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.
		7.SP.7b Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
		7.SP. 8 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
		7.SP.8a Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
		7.SP.8b Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.

3 Act Lessons | Mathematics Grade 7

			7.SP.8c Design and use a si compound events. For exa tool to approximate the an have type A blood, what is 4 donors to find one with ty	ulation to generate frequencies for ple, use random digits as a simulation wer to the question: If 40% of donors e probability that it will take at least e A blood?
	Title	Topic	Standards	Resources
	Yellow Starbursts	Probability, Sampling, Data	7.SP.2, 7.SP.6, MP.2, MP. 4	101qs

